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Introduction: What Are Forecasts and Why Do
We Need Them?
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Introduction - Definitions

The Science of Explaining Tomorrow Why the
Predictions You Made Yesterday Didn’t Come
True Today
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Introduction - Definitions

The Art of Explaining to Regulators Why the Predictions
You Are Making Are Better Than the Other Side’s and Lead
to Fair, Just, and Reasonable Rates.
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What is a forecast?

Informal definition: Projection or
development of conclusions regarding
likely outcomes that have not yet
occurred.

Common elements:
(1) Uncertainty about the future.

(2) Typically uses some combination of empiricism and judgment.

(3) Expected future usually based on observed past.
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The terminology between “forecasts” and standard empirical analysis
often gets cluttered since both use historic data to make inferences about
likely outcomes either yesterday (“backcast”), today, or in the future.

Common uses of forecasts in the regulatory process can be generalized
into:

(1) Ratemaking purposes: forecasts can be used to establish test year
information.

(2) Resource planning purposes: supply and demand-side resources needs over
time. Most IRP principles recognize that the first step is development of a reliable
forecast.

(3) Other special purposes: truing up data, benchmarking and performance
goals, normalization (i.e., weather, other factors), estimating the impact of certain
“‘events” or actions on utility outcomes(i.e., recession, implementation of
efficiency, new customer, departing customer, reactions to rate design, etc).
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Rates, Test Years, and Requlation

The “regulatory compact,” as a general term, gives utilities the opportunity
to earn a fair rate of return of and on their investments and prudently-

incurred costs. In return, they are expected to provide safe, reliable, and
economic service.

The first part of the compact defines the concept of the rate case, while
the second part defines what utilities are expected to do between rate
cases for those returns.

Determining “costs™ and “value” have been considerable academic and
applied challenge since the early days of regulation.

Unfortunately, the real world falls short of the ideals of economic theory
since legal standards define this as a reasonable process.
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Test Years and Test Periods

The “test year” is a basic concept used throughout utility regulation to
define the time frame within which rates are set. Some differentiate the
“test period” as a more refined version of this concept that takes the
“known and measurable” adjustments into account. Can often be used
with terms such as “rate period” and “rate year.”

Selection of the test year and its corresponding test period adjustments
can be controversial.

Criticisms is that these conditions have passed and are not likely to be
reflective of future operating conditions. The more dated the test year,
the more challenged and controversial, the ratemaking process.

Rejoinder is that there is legal and policy obligation to base test years on
known and measureable information.
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Historic versus Projected Test Years

The potential “staleness” of historic test years has led some states to
adopt forecasted test years which is a projection of the anticipated
outlook in some upcoming year.

A forecasted test year can suffer from a problem similar to a historic test
year since the forecast can become more speculative the further removed
it is from the current period.

Can lead to a process that includes considerable debate, judgment, and
in some instances compromises.

Current, there are an estimated 31 states that use strict historic test
years, 4 states that use strict forecasted test years, and 15 states that
allow utilities to choose between forecasted or historic.
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Forecasting methods
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Variety of different forecasting types can arise in the regulatory
process. These can be generalized into the following types each
with their own strengths and weaknesses.
Structural/stochastic approaches (econometrics)
Astructural/stochastic approaches (time series)

Structural/deterministic

Combination of Forecasts

Forecasted Inputs/Third Party Forecasts

12
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“Stochastic” since these approaches are based on statistical estimation
principles.

Common econometric models, typically focused on demand modeling, that
can take a variety of functional forms.

Most common approach is a log-linear model that posit that energy demand
(kWh, KW, Dth) is a function of prices, income, weather, and other factors.

Long historic that dates to the early 1970s on this more aggregate
approach.

Most common approach used by utilities in regulatory filings of all types.
Input data comes from internal historic information.

Forecasted input data (like income) typically comes from third-party
sources.

13
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These approaches tend to be agnostic about the functional form and
relationships/factors influencing demand.

Since these factors are based upon approximations of theory, and
data can be unreliable and not representative of the true
relationships (i.e., price), only a time series can produce least-biased
output.

Autoregressive (“AR”), moving average (“MA”), integrated (“I”),
approaches are used and combined (AR, MA, ARMA, ARIMA).

Variations not uncommon on relatively smooth moving trends like
customer forecasts. However, can be used to model energy use and
energy use per customer as well.

14
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“Deterministic” entails that models have no randomly distributed-
properties. In other words, they are not statistically estimated but based
upon a pre-defined (axiomatic) set of relationships. Can be very “black-
box” in nature.

Basic class cost of service model can be thought of as a “deterministic”
model of costs since it is based upon a set of assumed relationships (i.e.,
functional relationships and cost allocation factors).

Multi-areas dispatch models: based on a linear or non-linear optimization
model.

Valuation modeling: income, market, and cost approach used in some
states for rate base.

Cost-effectiveness modeling: mathematical relationships on “costs” and
“benefits” that rise to differing stakeholders: utility, participant, non-participant,
all ratepayers, society.
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Forecasting for Regulators

Based upon the conclusion that any two unbiased forecasts can be
combined to produce an equally unbiased forecast with increased
performance.

Useful method when you have two models with offsetting
performance issues. The “derivatives” approach to forecasting.

Keys: (1) any two unbiased forecast (2) how forecasts are
combined or weighted. Does require some subijectivity.

Despite usefulness, not commonly used. Cannot be used in all
situations, depends on the models and their purpose. Combining
can, in some instances, take two unbiased forecasts/estimates to
create a biased forecast/estimate. (i.e., valuation modeling)
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Comparison of actual and predicted demand model(s) — structural, time
series, combination
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Forecasting for Regulators

Generalized term for using forecasts and inputs from a third party.
These parties develop and maintain their own proprietary modeling
data and methodologies and sell the results to utilities or regulatory
commissions.

Utilities often subscribe to these forecasts particularly economic
outlooks.

The origins for many of these companies are common, but players
and names have changed with mergers and acquisitions in this
business.

Global Insight commonly used source for forecasted information.
Many states will use their own independent forecasting sources for

certain types of information (Indiana Ultility Forecasting Group, Florida
Legislative Research).

18
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Models

Structural/Stochastic
Astructural/Stochastic
Structural/Deterministic
Combination
Third-Party Forecasts

Data
Requirements

Moderate

Low

High
Low-Moderate
Low

Technical
Requirements

High

Moderate
Moderate-High
Low

Low

Forecasting for Regulators

Parsimony

Moderate-Low
High
Low
High
High

Robustness

Moderate-Low
Moderate
Moderate-Low
Moderate-Low
NA

Gamemanship

Moderate-High
Moderate-Low
High
High
High
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Any empirical model is a function of its
data, input and assumption. The
common adage of “garbage in,
garbage out” is very true in forecasting
and empirical modeling generally.

Common data problems:

Unique and not publicly available series.
Calculation errors.
Transformation/standardization errors.
Missing values

Outliers

20
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Forecasting for Regulators

Forecasting — Best Practices

What Makes a “Good”
Forecast?

(1) Data, inputs and assumptions
(2) Parsimony and consistency

(3) Robustness

(4) Predictability and replication

21
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Forecasting for Regulators
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Forecasting for Regulators

Understanding
the difference
between true
outliers and
“different”
observation is
important. Tests
such as Grubbs
Test and other
objective
measures should
be facilitated.
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Forecasting for Regulators

Parsimony: the simplest and most frugal
route of statistical explanation available.
Commonly-facilitated goal for science, math,
and statistics.

Does not mean “dumbing-down” the analysis.

Does mean that analytic complication for the
sake of analytic complication is a waste of
computational effort, regulatory resources, and
at worst, a potential sign of empirical
gamesmanship.
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Consistency:
analyses that
follow academic
literature, utility,
and/or regulatory
practice.

Utility regulation is an area rich with a long history of combining the best

of theory and practice. New analytic innovations that offer better insights
or enhanced predictability should be welcomed, but weighed against the
dollars/issues at stake.

25
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Model, forecast, or
empirical approach can
be said to be robust if
changes in one or two
inputs or assumptions
do not lead to wild

swings in the results. "I'm disappointed; if anyone should have seen
the red flags, it's you.”

Does not mean that predicted output cannot be variable or even
volatile (i.e., wholesale power prices, energy commaodity prices).

Robustness can be subjective in evaluating “large” changes in
order of magnitude but can be less subjective in evaluating
changes in direction or sign (i.e., results that move from positive
to negative and vice versa).
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The are a variety of measures that examine overall empirical “goodness-of-
fit.” Commonly used summary statistic is referred to as “R-squared” which
is also called the “coefficient of determination,” or the square of the
“correlation coefficient.”

R-square, however, is not the only measure, and can actually be an
inappropriate measure in comparing models of different composition since
often adding regressors can inflate R? values. Also — “correlation is not
causation.”

Make sure variable signs are significant and of the correct signs

Replication: from a regulatory perspective, it is imperative that forecasts
and models be replicated. It is simply bad regulatory practice to accept
forecasts at face value without additional checks.

Avoid taking results from deterministic models that cannot be replicated.
Black box results also create bad precedent.
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Demand Modeling
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Factors influencing energy demand (gas, electric) are similar to
other goods and services and include:

« The price of the good itself

« The price of complements and substitutes

* Income

« Weather

« Tastes of preferences

« Consumer expectations about future prices and income

Additional factors include technological innovation, demand-side
management programs, legislation, etc.
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Demand Modeling

Price

$120

$80

As price decreases, quantity
demanded increases, and vice
versa.

Change in quantity demanded.

100

Change in demand.

Quantity
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Price elasticity of demand = percentage change in quantity demanded = g
percentage change in price

Total Revenue Impact (P*Q)

Elasticity Value Terminology Definition for Percent Increase in Price

percentage change in
&: < - 1 Elastic quantity demanded is greater Revenues Fall
than percentage change in price.

percentage change in
é: 1 Unit Elastic quantity demanded is equal to Constant
the percentage change in price

percentage change in
&: > _1 Inelastic quantity demanded is less Revenues Increase
than percentage change in price.
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Price elasticity of demand = percentage change in quantity demanded = n
percentage change in income

Elasticity Terminology Definition

percentage change in
r] > 1 Elastic quantity demanded is greater
than percentage change in income

percentage change in
r] 1 Unit Elastic quantity demanded is equal to
the percentage change in income

percentage change in
r] < 1 Inelastic quantity demanded is less
than percentage change in income
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In practice, demand curves can take many different shapes

Linear w _ .
D=b+m(x) E Log- Linear Quadratic
2 In(D) = b + m(x) D =b + my(x) + my(z)?
Levels

Cobb-Douglas
D = AXmiZm2

33
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General forms (loq linear, log-loqg):

D =Db + m(x) log(D) = b + m(log(x))

More specific form:

Where:
|ogD — BO + B1P + BzY + BsW + B4X D = Natural gas demand

P = Price of natural gas

Y =Income
logD = B, + B4logP + B,logY + W = Weather
9 BO B1 9 BZ 9 X = Other structural variables
BBIOgW + B4|ng influencing demand

B = Estimated parameters.

34
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General form:

N N

N
In(D.) = By + ZBin‘l' ZZB:’;’X:'::X:';' + €
i T

More specific form:

logD = B, + B4logP + B4;(logP)? + B4,(logP)(logY) + B43(logP)(logW) +
B14(logP)(logX) + B,logY + B,,(logY)? + Bos(logY)(logW) + B,,(logY)(logX)
+ B3logW + B33(logW)? + B, (logW)(logX) + B4logX + B,44(logX)?

Where P = prices, Y = income, W = weather, and X = other structural
variables.
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Demand Modeling

Approach

Log-linear / double-log

Strengths

1. Relatively easy to specify and
estimate.

Weaknesses

1. Constant elasticity
assumption often unrealistic
and not justifiable.

2. Estimated coefficients are
directly interpretable as short-
run elasticities, and long-run
elasticities are easy to
calculate.

2. Sometimes problems of
consistency with the underlying
economic theory.

3. Estimated standard errors
provide measure of the
variability of the estimated
elasticities.

3. Appropriate only when one
has reason to believe that the
variables enter multiplicatively
into the equation.
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Approach

Strengths

Demand Modeling

Weaknesses

Translog

1. Imposes a minimum of
restrictions on demand
behavior and is very flexible.

1. Sometimes lack degrees of
freedom due to the large
number of regressions.

2. Firmly based in economic
theory.

2. Only well-behaved for a
limited range of relative prices.

3. Particular demand
characteristics are testable
(e.g., separability,
homotheticity, etc.).

3. Estimated elasticities are not
directly interpretable.

4. Allows the analysis of
substitutional relations.

4. More comlicated estimation
techniques are required.

5. Static formulations
dominate.

37



ﬁLSU Center for Energy Studies

Demand Modeling

Approach

Qualitative Choice

Strengths

1. Appropriate when dependent
variable comprises a finite set
of discrete alternatives.

Weaknesses

1. Inefficient estimates in the
case of zeros (logit, probit).

2. Relatively easy to estimate.

2. Theoretically not based on
assumptions of utility
maximization (logit).

3. Flexible specification.

3. Relies on rich and reliable
data sets.

4. Tobit models allow for
observations to equal zero.
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Demand Modeling

Approach

Pooled time series /
cross-section

Strengths

1. Pooling enables greater
efficiency of the estimates.

Weaknesses

1. Only makes sense if the
cross-sectional parameters are
constant over time.

2. Difficult specification.

39
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Prices and Income are often subjected to various different lag
structures in the demand modeling/forecasting process.

The use of lags recognizes that it takes time for the full impact
of either changes in price or income to materialize on energy
demand.

Lags also allow for the estimation of short run and longer run
elasticities.

Challenge is determining the most appropriate lag structure.

Two common approaches: (1) finite distributed lags and (2)
infinite distributed lag.
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One of the pioneers of demand modeling was Hendrick S.
Houthakker. His work in energy demand modeling, developed in
the early 1950s, was the basis for his broader work in overall
demand modeling.

Les Taylor, a former student and colleague of Houthakker
completed the first formal surveys of the literature in the Bell
Journal (1975, electricity only), and later, more broadly, for energy
demand (1977) in a general manuscript.

One of the more comprehensive surveys of energy demand
modeling was prepared by Douglas R. Bohi for the Electric Power
Research Institute( EPRI) in 1982 with a special emphasis on
price and income elasticities.
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A general primer on the role of natural gas demand forecasting and
how it relates to overall LDC planning can be found in:

Charles Goldman, et al (1993). Primer on Gas Integrated
Resource Planning. Berkeley, California: Lawrence Berkeley
Laboratories.

More recent survey specific to residential energy demand provided
by Reinhard Madlener

See Reinhard Madlener. (1996) Econometric Analysis of
Residential Energy Demand: A Survey. Journal of Energy
Literature. 2:3-32.

Madlener focuses on incorporating different functional forms, such
as those previously mentioned, into energy demand modeling.
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Customer
Model Total Sales = Forecasted NEL/

Customer * Forecasted
Customers

Net Energy Per
Load per
Customer (NEL)

Model v

Reconciliation

Final Sales
Forecast

Vv

N

Total Sales
(Per Class
Models)
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Demand Modeling

Street & Highway

Customers
(Lagged 1 Year)

Resale
Customers

Population

Housing Starts

Street & Highway
Customers

Industrial
Customers

Residential

Customers
(Lagged 1 Year)

Residential
Customers

Non-Agricultural
Employment

TOTAL
CUSTOMERS

Commercial
Customers

Residential
Customers

Railroad & Railways
Customers

Other Customers
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Demand Modeling

Real Personal
Income

Real Price of

Electricity
(Lagged 3 Months)

Total Customers

Heating Degree
Days

Net Energy per
Customer

Net Energy for
Load

Cooling Degree
Days

Dummy for
Population

TOTAL SALES

Sales/NEL
Ratio
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ﬁLSU Center for Energy Studies

Customer
Resale
Industrial Real Customers
Price of Electricity
. (Lagged 2 Months) Street & Highway
Residential Real Customers
Price of Electricity Cooling Degree
(Lagged 2 Months) Days
Industrial
Cooling Degree Dummy for Customers
Days & CDD Outliers
(Lagged 1 Month) Residential TOTAL
Customers SALES
Heating Degree
Days Commercial Real Sorranal
Price of Electricity Customers
Real Personal , —
Income Cooling Degree Railroad & Railways
Days
Customers
Dummy for Non-Ag
Shoulder Months Employment Other Customers
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Demand Modeling

The output to the left is
basic electricity demand
model.

Variables are listed in the
left hand column,
coefficients, standard errors,
t statistics, and probabilities
are provided in the middle
portion of the table.

Model run on total class
energy use basis (not use
per customer), includes
variables on weather (HDD,
CDD), and seasonality.

Summary statistics are at
the bottom for the
regression performance.

Electricity Usage Modeling (Residential MWh)

Basic Residential Electricity Model

Dependent Variakle: RESIDENTIAL_MWH

Method: Least Squares
Sample: 2001M01 2007M12

Included observations: 84

Coefficient
C 77062.56
PRICE_PER_MWH 495.833
CDDS 58.59974
HDDS 4.181725
MONTHS=FEBRUARY -25202.24
MONTHS=MARCH -42121.5
MONTHS=APRIL 45071.31
MONTHS=MAY 53866.27
MONTHS=JUNE 16903.37
MONTHS=JULY -10293.86
MONTHS=AUGUST -9595.14
MONTHS=SEPTEMBER 418.0799
MONTHS=0CTOBER -23797.64
MONTHS=NOVEMBER -39172.22
MONTHS=DECEMBEF -18086.45
R-squared 0.870725
Adjusted R-squared 0.844496
S.E. of regression 10721.62
Sum squared resid 7.93E+09
Log likelihood -890.4505
F-statistic 33.19624
Prob(F-statistic) 0

Std. Error

24661.34
134.0178
31.01987
20.24739
7050.043
11193.91
15814.16
19103.64
22715.95
23610.49
2225727
19289.94
15892.66
9222773
5929.047

Mean dependent var
S.D. dependent var
Akaike info criterion
Schwarz criterion
Hannan-Quinn criter.
Durbin-Watson stat

t-Statistic

3.125
3.700
1.889
0.143
-3.575
-3.763
-2.850
-2.820
-0.744
-0.436
-0.431
0.022
-1.497
-4.247
-3.050

0.003
0.000
0.063
0.887
0.001
0.000
0.006
0.006
0.459
0.664
0.668
0.983
0.139
0.000
0.003

123874
27188.7
21.5583
21.9924
21.7328
0.99864
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Demand Modeling

Electricity Usage Modelign — Surveying the Landscape of Typical Output

Constant
reflecting base
use

Higher R*2 and Adj-
R”"2 values tend to
indicate model fit,
but should be used
with caution.

Parsimony is an
important aspect of
model building, the
Adj-R"2 balances
both goodness of fit
and the principle of
parsimony.

™~

First Model

Dependent Variable: RESIDENTIAL_MWH
Method: Least Squares
Sample: 2001M01 2007M12

Included observations: 84

VEUET S

c
PRICE_PER_MWH
CDDS

HDDS
MONTHS=FEBRUARY
MONTHS=MARCH
MONTHS=APRIL
MONTHS=MAY
MONTHS=JUNE
MONTHS=JULY
MONTHS=AUGUST
MONTHS=SEPTEMBER
MONTHS=OCTOBER
MONTHS=NOVEMBER
MONTHS=DECEMBER

R-squared

S Adjusted R-squared

S.E. of regression
Sum squared resid
Log likelihood
F-statistic
Prob(F-statistic)

Coefficient

495833
58.59974
4181725
-25202.24

421215
-45071.31
-53866.27
-16903.37
-10293.86

-9595.14

418.0799
-23797.64
-39172.22
-18086.45

0870

0.844496

10 62

7.93E+09
-890.4505
33.19624

0

Std. Error

24661.34
134.0178
31.01987
29.24739
7050.043
11193.91
15814.16
19103.64
22715.95
23610.49
22257.27
19289.94
15802.66
0222.773
5920.047

Mean dependent var
S.D. dependent var
Akaike info criterion
Schwarz criterion
Hannan-Quinn criter.
Durbin-Watson stat

t-Statistic

123874
27188.7
21.5583
21.9924
21.7328
0.99864

Probability values
(P-Values) reflect
the significance of
each variable.
They are related to
t-Statistics. The
higher the t-
statistic, the lower
the p-value.

Akaike Info Criterion
(“AlIC”) and Schwarz
Info Criterion
(“SIC”) are also
good measures of
parsimony (lower is
better).
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Demand Modeling

This is the first model
run. Two initial results
stand out from the
output.

Heating degree days
have very low statistical
significance, other
variables have relatively
strong statistics.

From diagnostics
perspective, the Durbin-
Watson test statistic is
about 0.99 indicating the
possibility of
autocorrelation.

Electricity Usage Modeling — Examining Initial Statistical Output

Dependent Variable: RESIDEN TIAL_MVWH

Method: Least Squares

Sample: 2001M01 2007M12

Included observations: 84

Variable

C

PRICE_PER_MWH
CDDS

HDDS
MONTHS=FEBRUARY
MONTHS=MARCH
MONTHS=APRIL
MONTHS=MAY
MONTHS=JUNE
MONTHS=JULY
MONTHS=AUGUST
MONTHS=SEPTEMBER
MONTHS=OCTOBER
MONTHS=NOVEMBER
MONTHS=DECEMBER

R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
F-statistic
Prob(F-statistic)

Coefficient

77062.56

495.833
58.50974
4.181725

-25202.24

-42121.5

-45071.31
-53866.27
-16903.37
-10293.86

-9595.14
418.0799

-23797.64
-39172.22
-18086.45

0.870725
0.844496
10721.62
7.93E+09

-890.4505

33.19624
0

Std. Error

24661.34
134.0178
31.01987
20.24739
7050.043
11193.91
15814.16
19103.64
22715.95
23610.49
2225727
19289.94
15892.66
9222773
5929.047

Mean dependent var
S.D. dependent var
Akaike info criterion
Schwarz criterion
Hannan-Quinn criter.
Durbin-Watson stat

t-Statistic
3125  0.003
3700  0.000
1880  0.063
4‘@!%? 0.887
s 0.001
3763 0.000
2850  0.006
280  0.006
0.744  0.459
043  0.664
0431  0.668
002  0.983
1497 0139
4247  0.000
3.050  0.003
123874
27188.7
21,5583

21.9924

0.99864
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The Durbin-Watson test
statistic is based on the
null hypothesis that

autocorrelation does not Date: 02/21/11 Time: 08:38
: - : Sample: 2001 M01 2007 M1 2
exist (serially independent). worksurirbnt S
; . ; Autocorrelation Partial Correlation AC PAC @Q-Stat Prob
A test-statistic of 2 is the
“ ” . . LN I || — 1 0.494 0.494 21.236 0.000
Sweet SpOt ’aStatIStIC Of [ | (o | 2 0352 0144 32182 0.000
1 or less indicates that a ' 'g ! 3 0119 -0.137 33443 0.000
(I (I | 4 0207 0208 37.322 0.000
strong presence of M=l L) 5 0154 0.022 39.497 0.000
: : (I | | 6 0264 0151 45941 0.000
autocorrelation may exist. = b 7 0277 0088 £0787 0000
(I | ! ! 8 0255 0.059 56947 0.000
) A I I 9 0146 -0.028 59.001 0.000
A correlogram at right 1K 10 0147 0.023 61.110 0.000

shows statistically
significant partial
autocorrelation indicating
that an AR(1) term may be
necessary to capture mean
reversion.
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Electricity Usage Modeling— Reviewing the Corrected Output

The AR (1) adjustm ent Dependent Variable: RESIDENTIAL_MWH
. Method: Least Squares
appears to be correcting Sample (adjusted): 2001M02 2007 M12
the AT prOblem Included observations: 83 after adjustments
) Convergence achieved after 12 iterations
. Variable Coefficient Std.Error t-Statistic Prob.
However, two important e e ———————————————————
: 149214.00 16835.870 8.863 0000
eXF_’lan atory variables < PRICE_PER _ 14713 149.056 -0.987 ‘
(Pnce and Weather) are CDDS 26.46 22663 1.168
o =KPRL -37825.03 5889.203 6.423  0.000
not statistically MONTHS=AUGUST 1175220 13334.930 0881  0.381
Y MONTHS=DECEMBER 1777164 3654.395 4.863  0.000
sSign ificant. MONTHS=FEBRUARY -24034 .76 3466476 $933  0.000
MONTHS=JULY 1292977 14709.440 0879  0.383
L MONTHS=JUNE 5632.00 13813.830 0408 0685
This is likely due to MONTHS=MARCH -41404 49 4553503 -9.093  0.000
. : : MONTHS=MAY -36011.90 9774505 3684  0.001
collinearity with the MONTHS=NOVEMBER -34003.97 4893 835 6948 0.000
' MONTHS=OCTOBER -14052 58 6142.966 2288  0.025
mc_mthly dummy variables. MONTHS=SEPTEMBER 123420 9581.288 1288 0202
Prices and CDDs are AR(1) 0084 8708
hlghly seasonal. R-squared 0.920754  Mean dependentvar 123867
Adjusted R-squared 0.904439 S.D. dependentvar 27354
S.E. of regression 8455912 Akaike info criterion 21.085
Trimming the seasonal Sum squared resid 4 86E+09  Schwarz criterion 21522
] . Log likelihood -860.0371 Hannan-Quinn criter. 21.261
variables may improve F-statistic 56.43495  Durbin-Watson stat 22384
Prob(F-statistic) 0
performance.
Inverted AR Roots 074
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Electricity Usage Modeling — Moving to Parsimony

Reduced (“more parsimonious”) model shows some improvement since
all the relevant variables are statistically significant, autocorrelation has
been corrected although some model performance statistics are not as
attractive.

Second Model Third Model

DependentVariable: RESIDENTIAL_MWH
Method: Least Squares
Sample (adjusted): 2001M02 2007M12

Dependent Variable: RESIDENTIAL_MWH
Method: Least Squares
Sample (adjusted): 2001M02 2007M12

Included observations: 83 after adjustments

Included observations: 83 after adjustments Convergence achieved after 114 iterations

Convergence achieved after 12 iterations

Variable Coefficient Std. Error t-Statistic Variable _ Coefficient Std. Error t-Statistic
C 170991 50 26376.850 6.483 0.000
R-squared 0.920754 Mean dependent var 123867 E%Eg—PER—MW _53;23 2?3333 Eggg ggg}g}
Adjusted R-squared 0.904439 S.D. dependent var 27354 : ) ’ :
S.E. of regression 8455912  Akaike info criterion 21085 AR(1) 063 0.106 9935  0.000
Sum squared resid 4 86E+09 Schwarz criterion 21522
Log likelihood 860.0371  Hannan-Quinn criter. 21.261 R-squared S Meandepondentvar 123867
F-statistic 56.43405 Durbin-Watson stat 29384 Adjusted R-squared 0.665667 S D.dependentvar 273539
Prob(F-statistic) 0 S.E. of regression 1581645  Akaike info criterion 222225
Sum squared resid 1.98E+10 Schwarz criterion 22 3391
Inverted AR Roots 0.74 Log likelihood -918.233 Hannan-Quinn criter. 222693
F-statistic 5542159 Durbin-Watson stat 191957
Prob(F-statistic) 0
Inverted AR Roots 063
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Occular analysis: fitted to actual values. Model is not completely capturing
seasonal effects and that these effects are increasing and decreasing through
time. A multiplicative seasonal adjustment may fix this problem.

200 Notice poor fit on peaks. M

150

100 -

50

MWh (thousands)

-50
- T T - AN AN NN MmO T Y Y000 0N O © O O~ NN
© ©O O O 9 O 9O O O 9 9 O 9 O 9 O O 9 9 O OO0 O O o 9o o o
L S < Z L 2L 3 C<ZL3C<Z2ZLsC<ZL=C<ZzuL== <22

= Actual —Fitted -—-Residual
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Electricity Usage Modeling — Trend and Seasonality Adjustments

Use of multiplicative seasonal and trend variable improves overall
performance.

Final Model

Third Model Dependent Variable: RESIDENTIAL_MWH

Method: Least Squares

DependentVariable: RESIDENTIAL_MWH Sample (adjusted): 2001M02 2007 M12

Method: Least Squares
Sample (adjusted): 2001M02 2007M12

Included observations: 83 after adjustments

Included observations: 83 after adjustments Convergence achieved after 16 iterations

Convergence achieved after 114 iterations

VEUEDIE Coefficient Std. Emmor t-Statistic Prob.

Variable Coefficient Std. Error t-Statistic e
S  EEEEEEEEEEEEEn B A 144558.20 15032.280 9617 0.000

SRlCE PER MWH 170231 -gg 253;2-322 S-ggg g-g?? PRICE_PER_MWH -436.20 143.209 -3.046 0.003
cbDs 98.62 14.892 6622  0.000 'CIERDEDNSD 12;;32 1923% _gggg gggg
AR(1) 063 0.106 5935 0.000 B : : . :

TREND*SA 1691.87 163.115 10.372 0.000
R-squared 0.677899  Mean dependent var 123867 AR(1) 0.41 0.109 3.782 0.000
Adjusted R-squared 0.665667 S D.dependentvar 273539
ob orregression 1997045 Lialke Ino ererion 222228 | | R-squared 0.888704  Mean dependentvar 123867

um squared resi . + chwarZ critenon 2 .

Log iolinood 918233  Hannan-Quinn criter. 222693 | | Adlusted R-squared B  S.D.dependentvar 27354
F_statistic 5542150 Durbin-Watson stat 191957 S.E. of regression 9417.18  Akaike info criterion 21.208
Prob (F -statistic) 0 Sum squared resid 6.83E+09 Schwarz criterion 21.383

Log likelihood -874.1321 Hannan-Quinn criter. 21.278
Inverted AR Roots 063 F-statistic 12297 Durbin-Watson stat 17732

Prob(F-statistic) 0

Inverted AR Roots 0.41 54
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The new adjustment seems to work better. Peaks and troughs fit
better.

200 Notice that the peaks fit better
150 A /\

100 - MV/ v
N Notice that the troughs fit better though not perfectly.

[$)]
o

MWh (thousands)

-50
- - o - NN N NN MM MO T T T T OO W WL OO OO NNNN
@ PIILIIPIILILIIIIFPILIPPIIFILLIYIPILYILIILRIYIRIRQSP®e®
L S < Z L > 2L > C<Z2Z L 35 C<ZL 35 <z uL 3 C<zZ2uL 33 <2

= Actual —Fitted -—-Residual
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MWh (thousands)

A backcast is fitted by holding out data from January 2008 through December 2009,
and plotting model results on the know data. The light pink lines are two standard
deviation prediction intervals.

300

250

200

150

100 -

50

0_

-50
M MMMDMDMMDMMDMDNMDNMNO OO O MWW WOWOWOOKWOWOWO GO OO O OO OO O O O
QRRLLRIIPRRIPIIPRRIIIRAIPRRYLRRIYIYLYILYRIFYQRQRIYYL
DPTLSICSODOYOCN0ZANPLSCSYOYTCCcnNn0ZAPLsSCcsSYYCcnO0OZN

Pl.+ e e<Forecast PIl.- e———Actual —Fitted ——Residual

56



ﬁ_LSU Center for Energy Studies Demand Modeling

Come on! it can't go

Wrong every tims..,
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Natural gas demand model (residential) relatively straightforward
and is a function of lagged prices, income, weather and

customers.
Constant reflecting Variable Coefficient Standard Error t-Statistic
base use (double log
model) Intercept -5.8853 2 8533 2.06
Lagged price impacts Polynomial Price Terms
(elasticities): short run Current Period Price -0.2042 0.1078 -1.89
v. long run Lagged Price (t-1) -0.1021 0.0539 -1.89
Income (PCI) 1.4991 05170 2.90
Income (elasticity) Heating Degree Days 0.5574 0.0922 6.05
impacts
Adjusted R? 0.982
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Comparison of actual and predicted demand model(s) —
structural, time series, combination

Mcf

18,000,000
17,000,000 A
16,000,000 A
15,000,000 A
14,000,000 A
13,000,000 A
12,000,000
11,000,000
(o) N (e 0] [e)) o ~— (] o <t Tp] © N [e0] (@]
[e0) (e 0] (e 0] (e 0] D (@] (@)} D (@] (@)} D D D (@]
(@) » (0] D (o)} (0] D (o)} (@) » (o)} (@) » (0]
Actual Data Time-Series —e—Econometric = = =Combination
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Natural gas demand model (commercial) set up in fashion
similar to residential.

Constant reflecting Variable Coefficient Standard Error t-Statistic|
base use (double log
model) Intercept 418978 20.8635 2.01
Lagged price impacts Polynomial Price Terms
(elasticities): short run Current Period Price -0.8042 0.3504 -2.29
v. long run Lagged Price (t-1) -0.5361 0.2336 229
Lagged Price (t-2) -0.2681 0.1168 2.29
Income (elasticity) Income (PCI) 0.1453 1.3608 0.11
Heating Degree Days 0.0172 0.2551 0.07
Weather and customer  Customers -2.6406 2.5185 -1.05
impacts
Adjusted R 0.9122
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Comparison of actual and predicted demand model(s) —
structural, time series, combination

30,000,000

25,000,000 /‘
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Demand Modeling

Industrial demand models notoriously difficult to estimate

(as group).

Variable Coefficient Standard Error t-Statistic
Intercept 17.1259 1.4676 11.67
Price 01178 0.2669 -0.44
Income (Manufacturing GSP) 0.1901 0.1878 1.01
Customers -0.1665 0.1696 -0.98
Adjusted R? 0.251
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Comparison of actual and predicted demand model(s) —
structural, time series, combination
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Common forecasting adjustments (usage)

(B, i i |-.m;u51._,-—_-|_-II]:~ =1 i
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“How close b the ruth o you want o come, Siry”
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Demand or billing unit data is often changed or modified in the
ratemaking and/or planning process in order to account for a variety of
anticipated changes that may be the result of policy or other factors.

Common adjustments include:

« Weather normalization

* Income/economic adjustments

« “Unusual” events (ice-storms, hurricanes, catastrophes)
* Price change, stimulation or repression

* Energy efficiency
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Weather normalization adjustment is not the same as a weather normalization
clause tracker.

Weather normalization, in context of “forecasting,” is process to standardize billing
units for “normal” weather.

Weather normalization clause is an ongoing tracker to adjustment monthly bills for
“normal” weather-related/influenced use.

Normalization moves billing determinants to the “average” or “typical” use level.
So if period in question has colder than normal weather, and greater than average
HDDs, billing determinants will be adjusted downwards, and vice versa.
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IS “ " &) Origives | Adtist
Why is “normal” weather an Fle ot oot agh bR BsE itm —
, i th
Issue? wwrer CatoonSiock.com

Global warming/climate change
debate.

——

Until recently (roughly last 2
years), a warmer-than-average
winter weather cycle that was
particularly evident in the mid-
west and western U.S..

"The weather never changes kere.  Yeow're fived,”

Many utilities believed that the standard definition of “no_fmal” Wa_s_ not
picking up this trend.

Many utilities took the position that defining shorter periods were better
predictors.
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Forecasting for Regulators

Weather normalization
adjustments can range from
the very simple to the very
complicated.

The empirical/analytic
challenge is developing a set
of weather-related
parameters that define (in
unbiased fashion) the
relationship between
weather and energy use.

As a general rule, the results
from a load forecast can be
used to establish these
parameters, although often
that is not the case.

GARY'S |
WEATHER FORECASTING STONE

Most often, the debate does not focus on the
estimation of weather parameters as it does in
defining the “normal” period for establishing
“normal” weather.

This becomes a policy debate as much as it
does an empirical debate.

68



ﬁLSU Center for Energy Studies Forecasting for Regulators

Policy questions on defining “normal” weather:
Distinction needs to be made between “cycle” and “trend.”

« What adjustment are we really making? Is this a forecast or a
normalization process?

* Regardless, should the ratemaking process be based on cycles
or trends?

* What is the best time period to set for normal weather if a
change is determined to be appropriate? (5 years, 10 years, etc.)

« Should any changes in revenue recovery risk be identified in the
ratemaking process?
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Forecasting for Regulators

Common Forecasting Adjustments: Demand/Billing Determinants — Weather

Company

Alabama
Alagasco

Arkansas

Arkansas Western Gas
CenterPoint Energy
Arkansas Oklahoma Gas
Georgia
Atmos Energy
Indiana
Indiana Gas
Southern Indiana Gas & Electric
Citizens Gas & Coke Utility / Westfield
Gas
Nine small gas distribution companies

Kansas

Atmos Energy

Aquila

Kansas Gas Service Company
Kentucky

Atmos Energy

Columbia Gas

Delta Natural Gas

Louisville Gas and Electric
Louisiana

Atmos — Louisiana Gas Service

Atmos — Trans Louisiana Gas
Maryland

Columbia Gas

Number
of Months
Covered
by Clause

12

Mechanism
Type

—

—

NN —

—_— e

Customer Classes

Residential, Small Commercial and Small Industrial

Residential, Commercial
Residential, Small Commercial
Residential, Small Business

Residential, Commercial

Residential, General
Residential, General
Residential, Small General

Residential, General

All
All
Residential, General

Residential, Commercial, Public
Residential, Small General
Residential, Small General

Residential, Commercial

Residential, Commercial
Residential, Commercial

All

Number
of Years
(Normal)

n.a.

30
30
30

n.a.

30
30
30

30

30
30
30

30
30
30
30

n.a.
n.a.

30
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Forecasting for Regulators

Common Forecasting Adjustments: Demand/Billing Determinants — Weather

Company

Mississippi
Atmos Energy
Centerpoint

North Dakota
Montana-Dakota Utilities

New Jersey

Elizabethtown Gas
New Jersey Natural Gas
South Jersey

New York
Consolidated Edison
KeySpan Energy Delivery
National Fuel Gas Distribution
New York State Electric & Gas
Niagara Mohawk

Orange & Rockland Utilities

Rochester Gas & Electric
Oklahoma

Arkansas Oklahoma Gas

Oklahoma Natural Gas
Oregon

NW Natural
Pennsylvania

Philadelphia Gas Works
Rhode Island

Narragansett Electric
South Carolina

Piedmont Natural Gas

South Carolina Electric & Gas

Number
of Months
Covered
by Clause

0o o

000~~~

[o4]

Mechanism
Type

[RE IS I\

— ok o

Customer Classes

Residential, General
n.a.

Residential, General

Residential, General
Residential, General, Economic Dev.
Residential, General

All

Residential, Firm Transport

Residential, General, Small Cogen

All

Residential, Small and Large General,
Transportation

Residential, General, Firm Transportation
Residential, General, Firm Transportation

Residential, Small Business
Residential, Commercial, Industrial

Residential, Commercial
General, Municipal, Public Housing
All

Residential, Commercial
Residential, Small and Medium General

Number
of Years
(Nomal)

30
n.a.

30

20
20
20

30
30
30
30
30

30
30

10
30

25
30
n.a.

30
n.a.
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Common Forecasting Adjustments: Demand/Billing Determinants — Weather

Number
of Months Number
Covered Mechanism of Years
Company by Clause Type Customer Classes (Normal)
South Dakota
Montana-Dakota Utilities 7 1 Residential, General 30
Tennessee
Atmos Energy 6 1 Residential, Commercial 30
Chattanooga Gas 6 1 Residential, Commercial 30
Piedmont Natural Gas 5 1 Residential, Commercial 30
Texas
Atmos Energy 8 1 Residential, Commercial, Public
Utah
Questar Gas 12 1 Residential, General 30
Virginia
Appalachian Natural Gas Distribution 12 1 All 30
Atmos 12 1 Residential, Small Commercial 30
Roanoke Gas 12 1 All 30
Southwest Virginia Gas 12 1 All 30
Virginia Natural Gas 6 1 Residential 30
Washington Gas Light 8 1 All 135*
West Virginia
Eight small LDCs 12 1 Residential, Small Commercial 30
Wyoming
Questar Gas 12 1 General 10

Note: n.a. is not available.
*Washington Gas Light’s definition of normal weather is based on a trendline regression analysis. The Virginia Division uses 135 years; the Shenandoah
Division uses 25 years. 72
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600

—30-year average

500 || —05-year average /,\\\
400 / \
300 Is the S year

\N forecast better
\ éf///////

200 /\. berforming?
VAN /|
VAR

2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997

RMSE
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0.06

—30-year average

0.05 —D5-year average /\
0.04

What about / \
0.03

\ M \Slglr;ﬁity and / \

forecasting

0.02 \ / confidence? /

0_01 /A\ /\
M ~—

0.00 . . . . . . . . . . .

2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997

Coefficient of Variation
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- &) Original Asi
Income/Economic Reproduction ightz obtainadls from

. wnwt CatoonSiock com
Adjustments
HOW TO TURN THE ECONOMY AROUND

Utility forecasts will tend to Step ! Step 2 Step 3
include an economic projection
developed by third-party
commercial sources (or .\
independent state forecasting

units) to extrapolate loads :
and/or customer growth.

Can become problematic in a

recession since the economic
activity during these periods is
not “normal.”

If recession year billing determinants
are used, utility will have
considerable up-side opportunities
post-rate case.
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“Unusual Event” Adjustment

A related type of economic/load adjustment that can be made by utilities
during rate cases or other types of regulatory proceedings

These are often related to the economic adjustments discussed earlier
since:
(a) they can tend to be based off (or used with) the same models.
(b) they reflect a one-time event that is not normal to standard
operations

Examples can include weather-related events, usually resulting in large
scale outages. Can include other factors such as large-scale transmission-
generation outages.
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Price Elasticity Adjustment

Price elasticity defines the percentage change in quantity demanded
resulting from a percentage change in price.

Like other parameters, it can usually be extracted from unbiased load
forecast or other statistical demand analysis.

Can be used to adjust billing determinants for significant changes in price.
Use in typical ratemaking for electric and gas has been “hit-or-miss.”

Considerable discussion in the early 1990s as means of adjusting for the
risk-shifting nature of revenue decoupling (but not adopted).
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Energy Efficiency Adjustment

The role of energy efficiency on usage will be ongoing modeling challenge.

For gas distribution industry, no good source of information to use to do
broad analysis.

Modeling typically limited to time trend variables (not very explanatory).
Electric slightly better.
Empirically, could be a situation that creates endogeniety problem — no real

general equilibrium/simultaneous equation methodology for doing
integrating these impacts over time.

78



ﬁLSU Center for Energy Studies Forecasting for Regulators

Litigating forecasts and empirical analyses
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] i
'™ HIRING YOU : OUR ECONOMTIC L MO, T TUST
BECALIEE YOLITLE | FORECAST caLLsFoR  [5] HAVE o GO ON FAKE
HUGE AND SCARY. §| THEEmEmsencE oF  [| YOUEVER puremvieLs
i| weRLoRDs N2010 | ! O SCOPE
l,' E (| OUT TARGETS,
: /
3

M
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The Ten Commandments of Applied Econometrics &
Forecasting

Source: Peter Kennedy, Guide to Applied Econometrics, 6" Edition, 2008.
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Commandment 1. Use Common Sense and Economic Theory

Note that all that often, common sense is not all that common:

- failure to match per capita models with per capita
variables

 Failure to estimate with real variables rather than nominal.

* Inappropriate construction of dummy variables.

 Incorrect transformations.

» Confusing correlation with causation.
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Commandment 2. Avoid Type lll Error

Definition of Type Ill Error: coming up with all the right answers
for all the wrong reasons or using all the wrong methods.

An approximate answer to the right question is always better than
a precise answer to the wrong question.

Technical details about the question are often important.

Knowledge helps condition appropriate designation of the null
hypothesis, test statistics, and variables under investigation.
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Commandment 3. Know the Concept and Data Under Investigation

Extension of Commandment 2 -
know the details, history, and
institution of the industry and
process under investigation.

Example — modeling changes in
demand for utility with 20 year
history of energy efficiency
programs may be entirely different
than those starting new programs.

How closely do measured variables actually correspond to theory
(and does it matter)?

Be Neo....
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Commandment 4. Inspect the Data

Graph the data, develop
summary statistics know the
means, standard deviations,
minimum values, maximum
values, sample counts,
kurtosis, skewness, and
normality.

Be the Zen Master of the
data.
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Commandment 5: Keep it Sensibly Simple

Ensure parsimony but don’t confuse this
concept with “keep it simple, stupid” since lots
of models can be unnecessarily stupid and
simple and lead to biased results, errors, and

other problems.

86



fiLSLI Center for Energy Studies Forecasting for Regulators

Do the results hit you square
between the eyes?

Closely examine and
investigate those things that
appear strange.

Are coefficients of the correct
sign? Order of magnitude?

By examining the information
you get to know the
information.
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Commandment 7: Understand the

Costs/Benefits of Data Mining

Developing data to improve results and
generate a certain degree of “robustnes” =
good.

Developing data to improve the likelihood of
attaining a certain result = bad
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Commandment 8. Be Prepared to Compromise

Can often be a gap between theory and results.

Often forced to compromise to lean to a
particular result — may lose overall predictive
capabilities for theoretic and applied
consistency. (recall earlier example on the
residential electricity example).
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Commandment 9: Don’t Confuse Statistical
and Economic Significance

Some parameter estimates may large, of
correct sign, but not at traditional significance
levels.

Some estimates may be significant, but order
of magnitude is small.

The standard error (confidence interval) of a
particular estimate may have considerably

iImplications.
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Commandment 10: Report Sensitivities

Anticipate and prioritize the most important
sensitivities.

Mindful of those that are not that entirely
robust.
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Secure data, programming code, other input information. Request
all variables be identified, variable transformations explained,
identify all missing or excluded data (and rationale), and clearly
Identify and explain all assumptions.

Obfuscation is a dead-ringer for a problem. While software is
usually commercially protected against distribution, no MODEL
nor its OUTPUT is confidential.

Review sensitivities and diagnostics.

Research and verify relative to theory and practice.

Conduct independent analysis and where needed, supplement the
record for your Commissioners: do not attempt to make your case

through cross.
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« Confidence in forecasting reasonableness given current
Information and analysis goals.

« Base decisions on solid, tested and well-grounded methodologies
and approaches: “state of the art” is not the same as “best
practices.”

« Make sure decision is based upon independent output that can be
verified — stay away from the “black box.”

 Decisions informed by important scenarios/sensitivities.

 Empirical consistency and accountability across proceedings and
analyses (i.e., IRP vs. rate case)
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Questions, Comments, & Discussion

dismukes@Isu.edu

N
L
LSS
Center for Energy Studies

www.enrg.lsu.edu
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